SULJE VALIKKO

avaa valikko

Probabilistic Deep Learning
46,30 €
Manning Publications
Sivumäärä: 252 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2021, 08.02.2021 (lisätietoa)
Kieli: Englanti
Probabilistic Deep Learning shows how probabilistic deep learning models gives readers the tools to identify and account for uncertainty and potential errors in their results.

 

Starting by applying the underlying maximum likelihood principle of curve fitting to deep learning, readers will move on to using the Python-based Tensorflow Probability framework, and set up Bayesian neural networks that can state their uncertainties.

 

Key Features

·   The maximum likelihood principle that underlies deep learning applications

·   Probabilistic DL models that can indicate the range of possible outcomes

·   Bayesian deep learning that allows for the uncertainty occurring in real-world situations

·   Applying probabilistic principles to variational auto-encoders

 

Aimed  at  a  reader  experienced  with  developing  machine  learning  or deep learning applications.

 

About the technology

Probabilistic deep learning models are better suited to dealing with the noise  and  uncertainty  of  real  world  data —a  crucial  factor  for self-driving cars, scientific results, financial industries, and other accuracy-critical applications.

 

Oliver Dürr is professor for data science at the University of Applied Sciences in Konstanz, Germany.

 

Beate Sick holds a chair for applied statistics at ZHAW, and works as a researcher and lecturer at the University of Zurich, and as a lecturer at ETH Zurich.

 

Elvis Murina is a research assistant, responsible for the extensive exercises that accompany this book.

 

Dürr and Sick are both experts in machine learning and statistics. They have supervised numerous bachelors, masters, and PhD the seson the topic of deep learning, and planned and conducted several postgraduate and masters-level deep learning courses. All three authors have been working with deep learning methods since 2013 and have extensive experience in both teaching the topic and developing probabilistic deep learning models.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tulossa! 28.11.2020 Kustantajan ilmoittama saatavuuspäivä on ylittynyt, selvitämme saatavuutta. Voit tehdä tilauksen heti ja toimitamme tuotteen kun saamme sen varastoomme. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Probabilistic Deep Learningzoom
Näytä kaikki tuotetiedot
ISBN:
9781617296079
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste