SULJE VALIKKO

avaa valikko

Jugal Kumar Kalita | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Network Anomaly Detection - A Machine Learning Perspective
Dhruba Kumar Bhattacharyya; Jugal Kumar Kalita
Taylor & Francis Inc (2013)
Kovakantinen kirja
128,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
DDoS Attacks - Evolution, Detection, Prevention, Reaction, and Tolerance
Dhruba Kumar Bhattacharyya; Jugal Kumar Kalita
Taylor & Francis Inc (2016)
Kovakantinen kirja
130,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Gene Expression Data Analysis - A Statistical and Machine Learning Perspective
Pankaj Barah; Dhruba Kumar Bhattacharyya; Jugal Kumar Kalita
Taylor & Francis Ltd (2021)
Kovakantinen kirja
164,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Gene Expression Data Analysis - A Statistical and Machine Learning Perspective
Pankaj Barah; Dhruba Kumar Bhattacharyya; Jugal Kumar Kalita
Taylor & Francis Ltd (2024)
Pehmeäkantinen kirja
79,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Network Anomaly Detection - A Machine Learning Perspective
128,10 €
Taylor & Francis Inc
Sivumäärä: 366 sivua
Asu: Kovakantinen kirja
Painos: 1
Julkaisuvuosi: 2013, 18.06.2013 (lisätietoa)
Kieli: Englanti
With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents machine learning techniques in depth to help you more effectively detect and counter network intrusion.

In this book, you’ll learn about:



Network anomalies and vulnerabilities at various layers
The pros and cons of various machine learning techniques and algorithms
A taxonomy of attacks based on their characteristics and behavior
Feature selection algorithms
How to assess the accuracy, performance, completeness, timeliness, stability, interoperability, reliability, and other dynamic aspects of a network anomaly detection system
Practical tools for launching attacks, capturing packet or flow traffic, extracting features, detecting attacks, and evaluating detection performance
Important unresolved issues and research challenges that need to be overcome to provide better protection for networks

Examining numerous attacks in detail, the authors look at the tools that intruders use and show how to use this knowledge to protect networks. The book also provides material for hands-on development, so that you can code on a testbed to implement detection methods toward the development of your own intrusion detection system. It offers a thorough introduction to the state of the art in network anomaly detection using machine learning approaches and systems.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Network Anomaly Detection - A Machine Learning Perspectivezoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste