SULJE VALIKKO

avaa valikko

Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration
64,10 €
Springer
Sivumäärä: 127 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2021, 25.03.2021 (lisätietoa)
Kieli: Englanti
Tuotesarja: SpringerBriefs in Mathematics
This book introduces key topics on Geometric Invariant Theory, a technique to obtaining quotients in algebraic geometry with a good set of properties, through various examples. It starts from the classical Hilbert classification of binary forms, advancing to the construction of the moduli space of semistable holomorphic vector bundles, and to Hitchin’s theory on Higgs bundles. The relationship between the notion of stability between algebraic, differential and symplectic geometry settings is also covered.

Unstable objects in moduli problems -- a result of the construction of moduli spaces -- get specific attention in this work. The notion of the Harder-Narasimhan filtration as a tool to handle them, and its relationship with GIT quotients, provide instigating new calculations in several problems. Applications include a survey of research results on correspondences between Harder-Narasimhan filtrations with the GIT picture and stratifications of the moduli space of Higgs bundles.

Graduate students and researchers who want to approach Geometric Invariant Theory in moduli constructions can greatly benefit from this reading,  whose key prerequisites are general courses on algebraic geometry and differential geometry.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtrationzoom
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste