Stochastic Modeling and Analysis of Manufacturing Systems
Manufacturing systems have become increasingly complex over recent years. This volume presents a collection of chapters which reflect the recent developments of probabilistic models and methodologies that have either been motivated by manufacturing systems research or been demonstrated to have significant potential in such research.
The editor has invited a number of leading experts to present detailed expositions of specific topics. These include: Jackson networks, fluid models, diffusion and strong approximations, the GSMP framework, stochastic convexity and majorization, perturbation analysis, scheduling via Brownian models, and re-entrant lines and dynamic scheduling. Each chapter has been written with graduate students in mind, and several have been used in graduate courses that teach the modeling and analysis of manufacturing systems.