Motion and vibration control is a fundamental technology for the development of advanced mechanical systems such as mechatronics, vehicle systems, robots, spacecraft, and rotating machinery. Often the implementation of high performance, low power consumption designs is only possible with the use of this technology. It is also vital to the mitigation of natural hazards for large structures such as high-rise buildings and tall bridges, and to the application of flexible structures such as space stations and satellites. Recent innovations in relevant hardware, sensors, actuators, and software have facilitated new research in this area.
This book deals with the interdisciplinary aspects of emerging technologies of motion and vibration control for mechanical, civil and aerospace systems. It covers a broad range of applications (e.g. vehicle dynamics, actuators, rotor dynamics, biologically inspired mechanics, humanoid robot dynamics and control, etc.) and also provides advances in the field of fundamental research e.g. control of fluid/structure integration, nonlinear control theory, etc.
Each of the contributors is a recognised specialist in his field, and this gives the book relevance and authority in a wide range of areas.