Exploiting new advanced structures and electromechanical systems, e. g. , adaptive structures, high-precision systems, micro electromechanical systems, distributed sensors/actuators, precision manipulation and controls, etc. , has been becoming one of the mainstream research and development activities (structure & motion) in recent years. These new systems and devices could bring a new technological revolution in modern industries and further, directly or indirectly, impact human life. In the search for and research in innovative technologies, it is proved that piezoelectric materials are very versatile in both sensor and actuator applications. Consequently, piezoelectric technology has been widely applied to a large number of industrial applications and devices, varying from thin-film micro sensors/actuators to large space structures in addition to those relatively conventional applications, e. g. , sensors, actuators, hydrophones, precision manipulators, mobile robots, micro motors, etc. There have been a few books on piezoelectricity published in the past; however, a unified presentation of piezoelectric shells and distributed senSing/control applications is still lacking. This book is intended to fill the gap and to pro~de practising engineers and researchers with an introduction to advanced piezoelectric shell theories and distributed sensor/actuator technologies in structural identification and control. This book represents a collection of the author's recent research and development on piezoelectric shells and related applications to distributed measurement and control of continuaj it reflects six best-paper awards, including [ xviii] • Contents. two ASME Best-Paper Awards in recent years.