Big data and artificial intelligence (AI) cannot remain limited to academic theoretical research. It is crucial to utilize them in practical business scenarios, enabling cutting-edge technology to generate tangible value. This book delves into the application of AI from theory to practice, offering detailed insights into AI project design and code implementation across eleven business scenarios in four major sectors: retail banking, e-banking, bank credit, and tech operations. It provides hands-on examples of various technologies, including automatic machine learning, integrated learning, graph computation, recommendation systems, causal inference, generative adversarial networks, supervised learning, unsupervised learning, computer vision, reinforcement learning, fuzzy control, automatic control, speech recognition, semantic understanding, Bayesian networks, edge computing, and more. This book stands as a rare and practical guide to AI projects in the banking industry. By avoiding complex mathematical formulas and theoretical analyses, it uses plain language to illustrate how to apply AI technology in commercial banking business scenarios. With its strong readability and practical approach, this book enables readers to swiftly develop their own AI projects.