SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Classical and Involutive Invariants of Krull Domains
101,40 €
Springer
Sivumäärä: 260 sivua
Asu: Pehmeäkantinen kirja
Painos: Softcover reprint of
Julkaisuvuosi: 2013, 03.10.2013 (lisätietoa)
Kieli: Englanti
Tuotesarja: K-Monographs in Mathematics 5
Just suppose, for a moment, that all rings of integers in algebraic number fields were unique factorization domains, then it would be fairly easy to produce a proof of Fermat's Last Theorem, fitting, say, in the margin of this page. Unfortunately however, rings of integers are not that nice in general, so that, for centuries, math­ ematicians had to search for alternative proofs, a quest which culminated finally in Wiles' marvelous results - but this is history. The fact remains that modern algebraic number theory really started off with in­ vestigating the problem which rings of integers actually are unique factorization domains. The best approach to this question is, of course, through the general the­ ory of Dedekind rings, using the full power of their class group, whose vanishing is, by its very definition, equivalent to the unique factorization property. Using the fact that a Dedekind ring is essentially just a one-dimensional global version of discrete valuation rings, one easily verifies that the class group of a Dedekind ring coincides with its Picard group, thus making it into a nice, functorial invariant, which may be studied and calculated through algebraic, geometric and co homological methods. In view of the success of the use of the class group within the framework of Dedekind rings, one may wonder whether it may be applied in other contexts as well. However, for more general rings, even the definition of the class group itself causes problems.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Classical and Involutive Invariants of Krull Domains
Näytä kaikki tuotetiedot
ISBN:
9789401064941
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste