SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Topics in Computational Algebra
134,60 €
Springer
Sivumäärä: 261 sivua
Asu: Kovakantinen kirja
Painos: 1990
Julkaisuvuosi: 1991, 31.01.1991 (lisätietoa)
Kieli: Englanti
The main purpose of these lectures is first to briefly survey the fundamental con­ nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod­ ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C).

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Topics in Computational Algebrazoom
Näytä kaikki tuotetiedot
ISBN:
9780792311171
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste