SULJE VALIKKO

avaa valikko

A Nonlinear Time Series Workshop - A Toolkit for Detecting and Identifying Nonlinear Serial Dependence
134,60 €
Springer-Verlag New York Inc.
Sivumäärä: 201 sivua
Asu: Pehmeäkantinen kirja
Painos: Softcover reprint of
Julkaisuvuosi: 2012, 25.09.2012 (lisätietoa)
Kieli: Englanti
Tuotesarja: Dynamic Modeling and Econometrics in Economics and Finance 2
The analysis ofwhat might be called "dynamic nonlinearity" in time series has its roots in the pioneering work ofBrillinger (1965) - who first pointed out how the bispectrum and higher order polyspectra could, in principle, be used to test for nonlinear serial dependence - and in Subba Rao and Gabr (1980) and Hinich (1982) who each showed how Brillinger's insight could be translated into a statistical test. Hinich's test, because ittakes advantage ofthe large sample statisticalpropertiesofthe bispectral estimates became the first usable statistical test for nonlinear serial dependence. We are forever grateful to Mel Hinich for getting us involved at that time in this fascinating and fruitful endeavor. With help from Mel (sometimes as amentor,sometimes as acollaborator) we developed and applied this bispectral test in the ensuing period. The first application ofthe test was to daily stock returns {Hinich and Patterson (1982, 1985)} yielding the important discovery of substantial nonlinear serial dependence in returns, over and above the weak linear serial dependence that had been previously observed.
The original manuscript met with resistance from finance journals, no doubt because finance academics were reluctant to recognize the importance of distinguishing between serial correlation and nonlinear serial dependence. In Ashley, Patterson and Hinich (1986) we examined the power and sizeofthe test in finite samples.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
A Nonlinear Time Series Workshop - A Toolkit for Detecting and Identifying Nonlinear Serial Dependence
Näytä kaikki tuotetiedot
ISBN:
9781461346654
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste