This book is the result of a collaboration between a human editor and an artificial intelligence algorithm to create a machine-generated literature overview of research articles analyzing Educational Data Mining and Learning Analytics. It’s a new publication format in which state-of-the-art computer algorithms are applied to select the most relevant articles published in Springer Nature journals and create machine-generated literature reviews by arranging the selected articles in a topical order and creating short summaries of these articles.
The popularity of Educational Data Mining has grown among educators seeking more effective ways to monitor and incentivize student progress and engagement during the COVID-19 pandemic. This has led to increased interest within research communities. The book provides a comprehensive overview of state-of-the-art research in Education Data Mining and its applications. Each chapter includes case studies to support theoretical concepts.
The book is of great interest for a wide range of audiences, including computer scientists and educational philosophers.