SULJE VALIKKO

Korttimaksuissa häiriöitä | Card payment d... LUE LISÄÄ

avaa valikko

Cross-device Federated Recommendation : Privacy-Preserving Personalization
121,40 €
Springer
Sivumäärä: 157 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2025, 26.04.2025 (lisätietoa)
Kieli: Englanti
Tuotesarja: Machine Learning: Foundations, Methodologies, and Applications

This book introduces the prevailing domains of recommender systems and cross-device federated learning, highlighting the latest research progress and prospects regarding cross-device federated recommendation. As a privacy-oriented distributed computing paradigm, cross-device federated learning enables collaborative intelligence across multiple devices while ensuring the security of local data. In this context, ubiquitous recommendation services emerge as a crucial application of device-side AI, making a deep exploration of federated recommendation systems highly significant.



This book is self-contained, and each chapter can be comprehended independently. Overall, the book organizes existing efforts in federated recommendation from three different perspectives. The perspective of learning paradigms includes statistical machine learning, deep learning, reinforcement learning, and meta learning, where each has detailed techniques (e.g., different neural building blocks) to present relevant studies. The perspective of privacy computing covers homomorphic encryption, differential privacy, secure multi-party computing, and malicious attacks. More specific encryption and obfuscation techniques, such as randomized response and secret sharing, are involved. The perspective of federated issues discusses communication optimization and fairness perception, which are widely concerned in the cross-device distributed environment. In the end, potential issues and promising directions for future research are identified point by point.



This book is especially suitable for researchers working on the application of recommendation algorithms to the privacy-preserving federated scenario. The target audience includes graduate students, academic researchers, and industrial practitioners who specialize in recommender systems, distributed machine learning, information retrieval, information security, or artificial intelligence.



 



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tulossa! Tuote ilmestyy 26.04.2025. Voit tehdä tilauksen heti ja toimitamme tuotteen kun saamme sen varastoomme. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Cross-device Federated Recommendation : Privacy-Preserving Personalization
Näytä kaikki tuotetiedot
ISBN:
9789819632114
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Meistä
Yhteystiedot ja aukioloajat
Usein kysytyt
Akateemisen Ystäväklubi
Toimitusehdot
Tietosuojaseloste
Seuraa Akateemista
Instagram
Facebook
Threads
TikTok
YouTube
LinkedIn