Neutron radiography has in recent years emerged as a useful and complementary technology for radiation diagnosis. It is now routinely used in industrial quality assurance and in support of selected research and developmental activities. Conferences are held on the subject, pertinent handbooks exist, and technical papers appear regularly reporting on new developments. While neutron radiography has indeed passed through the transition from a scientific curiosity to technological relevance, it is a sign of its continuing dynamic evolution that little material has appeared which provides an integrated mathematical and physical analysis of the subject possessing both an instructional as well as reference function. It is our hope that this monograph will fill this need. The distinctiveness of neutron radiography rests on the unique interactions between neutrons and nuclei. This leads to some special relationships between the material and geometrical properties of an object and the neutron radiographic image. The evolution of a technical discipline demands that specific conceptual constructs be developed and their mathematical representations examined and compared with controlled experiments. Experience has convinced us that a particular and substantial body of knowledge has accumulated endowing neutron radiography with the essential foundations of a unique mathematical and physical science. Our scientific and professional involvement in neutron radiography began some 15 years ago when the senior author (A.A.H.) found himself with convenient access to the McMaster University Nuclear Reactor and research support from the Government of Canada.