Recent developments in various areas of chemistry have been decisively influenced by the principles of structure and mechanism and by the ideas of coordination chemistry, in particular by the donor-acceptor approach, A unified view of almost all kinds of molecular forces is provided by quantum mechanics, and for practical purposes have been classified according to model assumptions, namely, dispersion, polarization, electrostatic, and short-range forces. The latter are divided into two- and three-center covalent chemical bonds, metallic bonds, and exchange-repulsion forces. This approach allows statements of principle and systematic analysis. However, quantitative predictions on concrete large systems are virtually impossible, and there are no general rules that account for structural and chemical changes due to intermolecular interactions. Chemists are therefore left with qualitative descriptions in which the changes in electron densities are considered. Such models as the MO theory or the resonance concept unrealistically assume that the nuclei remain in fixed positions. Further difficulties are encountered in the attempted description on the "nature" of the chemical bond, e.g., the forces involved. In order to avoid these difficulties an extension of the donor-acceptor concept, characterized by the comparison between equilibrium structures in different molecular environments, will be presented in this book. In this way, changes in the positions of the nuclei can be taken into account and the question of the nature of the molecular forces is no longer important.