This conference allowed specialists in several complex variables to meet with specialists in potential theory to demonstrate the interface and interconnections between their two fields. The following topics were discussed: 1. Real and complex potential theory - capacity and approximation, basic properties of plurisubharmonic functions and methods to manipulate their singularities and study theory growth, Green functions, Chebyshev-like quadratures, electrostatic fields and potentials, and the propagation of smallness. 2. Complex dynamics - review of complex dynamics in one variable, Julia sets, Fatou sets, background in several variables, Henon maps, ergodicity use of potential theory and multifunctions. 3. Banach algebras and infinite dimensional holomorphy - analytic multifunctions, spectral theory, analytic functions on a Banach space, semigroups of holomorphic isometries, Pick interpolation on uniform algebras and von Neumann inequalities for operators on a Hilbert space.