Appendix 164 3. A 3. A. 1 Approximate Estimation of Fundamental Matrix from General Matrix 164 3. A. 2 Estimation of Affine Transformation 165 4 RECOVERY OF EPIPOLAR GEOMETRY FROM LINE SEGMENTS OR LINES 167 Line Segments or Straight Lines 168 4. 1 4. 2 Solving Motion Using Line Segments Between Two Views 173 4. 2. 1 Overlap of Two Corresponding Line Segments 173 Estimating Motion by Maximizing Overlap 175 4. 2. 2 Implementation Details 4. 2. 3 176 Reconstructing 3D Line Segments 4. 2. 4 179 4. 2. 5 Experimental Results 180 4. 2. 6 Discussions 192 4. 3 Determining Epipolar Geometry of Three Views 194 4. 3. 1 Trifocal Constraints for Point Matches 194 4. 3. 2 Trifocal Constraints for Line Correspondences 199 4. 3. 3 Linear Estimation of K, L, and M Using Points and Lines 200 4. 3. 4 Determining Camera Projection Matrices 201 4. 3. 5 Image Transfer 203 4. 4 Summary 204 5 REDEFINING STEREO, MOTION AND OBJECT RECOGNITION VIA EPIPOLAR GEOMETRY 205 5. 1 Conventional Approaches to Stereo, Motion and Object Recognition 205 5. 1. 1 Stereo 205 5. 1. 2 Motion 206 5. 1. 3 Object Recognition 207 5. 2 Correspondence in Stereo, Motion and Object Recognition as 1D Search 209 5. 2. 1 Stereo Matching 209 xi Contents 5. 2. 2 Motion Correspondence and Segmentation 209 5. 2. 3 3D Object Recognition and Localization 210 Disparity and Spatial Disparity Space 210 5.