Plant resistance to pathogens is one of the most important strategies of disease control. Knowledge of resistance mechanisms, and of how to exploit them, has made a significant contribution to agricultural productivity. However, the continuous evolution of new variants of pathogen, ana additional control problems posed by new crops and agricultural methods, creates a need for a corresponding increase in our understanding of resistance and ability to utilize it. The study of resistance mechanisms also has attractions from a purely academic point of view. First there is the breadth of the problem, which can be approached at the genetical, molecular, cellular, whole plant or population lev~ls. Often there is the possibility of productive exchange of ideas between different disciplines. Then there is the fact that despite recent advances, many of the mechanisms involved have still to be fully elucidated. Finally, and compared with workers in other areas of biology, the student of resistance is twice blessed in having as his subject the interaction of two or more organisms, with the intriguing problems of recognition, specificity and co-evolution which this raises.