Soft computing, as a collection of techniques exploiting approximation and tolerance for imprecision and uncertainty in traditionally intractable problems, has become very effective and popular especially because of the synergy derived from its components. The integration of constituent technologies provides complementary methods that allow developing flexible computing tools and solving complex problems. A wide area of natural applications of soft computing techniques consists of the control of dynamic systems, including robots. Loosely speaking, control can be understood as driving a process to attain a desired goal. Intelligent control can be seen as an extension of this concept, to include autonomous human-like interactions of a machine with the environment. Intelligent robots can be characterized by the ability to operate in an uncertain, changing environment with the help of appropriate sensing. They have the power to autonomously plan and execute motion sequences to achieve a goal specified by a human user without detailed instructions. In this volume leading specialists address various theoretical and practical aspects in soft computing, intelligent robotics and control. The problems discussed are taken from fuzzy systems, neural networks, interactive evolutionary computation, intelligent mobile robotics, and intelligent control of linear and nonlinear dynamic systems.