This book attempts to present a comprehensive survey of the geometry of CR-submanifolds. The theory of submanifolds is one of the most interesting topics in differential geometry. The topic is introduced by Aurel Bejancu as a generalization of holomorphic and totally real submanifolds of almost Hermitian manifolds, in 1978. Afterward, the study of CR-submanifolds became a very active research subject.
Organized into 22 chapters, the book starts with basic knowledge of Riemannian manifolds and submanifolds, almost Hermitian manifolds and their subclasses, Hopf fibration, symmetric spaces, and a general inequality for submanifolds in complex space forms (in Chaps. 1 and 2). Later, it presents the main results on CR-submanifolds in Kaehler manifolds, the basic inequalities associated with CR-submanifolds in Kaehler manifolds, and several theories and results related to Kaehler manifolds (in Chaps. 3–11). Further, the book discusses the basics of almost-contact metric manifolds and their subclasses, CR-submanifolds of Sasakian, trans-Sasakian and quasi-Sasakian manifolds, with a particular attention on the normal CR-submanifolds (in Chap. 12). It also investigates the contact CR-submanifolds of S-manifolds, the geometry of submersions of CR-submanifolds, and the results on contact CR-warped product submanifolds (in Chaps. 16–18, 20). In Chapter 19, we discuss submersions of CR-submanifolds. The book also presents some recent results concerning CR-submanifolds of holomorphic statistical manifolds. In particular, it gives the classification of totally umbilical CR-statistical submanifolds in holomorphic statistical manifolds, as well as a Chen–Ricci inequality for such submanifolds (Chapter 21). In the last chapter, we present results on CR-submanifolds of indefinite Kaehler manifolds and their applications to physics.