Rehabilitation robotics is an important field of study focused on improving the gait rehabilitation of people affected by neurological disorders, ictus, cerebral palsy, and spinal cord injuries, among others. The study of rehabilitation robotics includes medical activities, kinematics dynamics, and control analysis. This book presents a complete and exhaustive analysis of the kinematics and dynamics of exoskeleton robots for rehabilitation. The forward and inverse kinematics are studied using the geometric, Denavit-Hartenberg, and screw theory approach. The dynamics analysis of exoskeleton robots using Newton-Euler, Euler–Lagrange, and D'Alembert formulation are also studied. Moreover, the main control techniques for exoskeleton robots are analyzed, including robust control, impedance control, adaptive control, Lyapunov functions, and uncertainties found in dynamic systems. The book includes MATLAB applications and examples.