This book introduces a novel paradigm for machine learning and data mining called predictive clustering, which covers a broad variety of learning tasks and offers a fresh perspective on existing techniques.
The book presents an informal introduction to predictive clustering, describing learning tasks and settings, and then continues with a formal description of the paradigm, explaining algorithms for learning predictive clustering trees and predictive clustering rules, as well as presenting the applicability of these learning techniques to a broad range of tasks. Variants of decision tree learning algorithms are also introduced. Finally, the book offers several significant applications in ecology and bio-informatics.
The book is written in a straightforward and easy-to-understand manner, aimed at varied readership, ranging from researchers with an interest in machine learning techniques to practitioners of data mining technology in the areas of ecology and bioinformatics.