Binary systems for the treatment of cancer potentially are among the most attractive of the new therapeutic modalities that currently are under investigation. The basicconcept is to selectivelydestroy malignantcells whileconcomitantlysparing normal tissue. Neutron capture therapy (NCT) is the binary system that has been the subject of the Fifth International Symposium on Neutron Capture Therapy, which was held September13-17, 1992, in Columbus, Ohio, undertheauspicesoftheInternational Society for Neutron Capture Therapy. Its objective was to bring together researchers from throughout the world and to provide a forum at which they could present the latest advances in the development of Neutron capture therapy. Neutron capture therapy has largely, but not exclusively, focused on the use of boron-10 as the target nuclide. Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when the stable isotope, boron-10, absorbs low-energy non ionizing thermal neutrons to yield alphaparticles and recoiling lithium-7 nuclei. The size and energy of these high linear energy transfer (LET) particles result in their being confined largely to the cells in which the capture reaction occurs. For BNCT to be successful, a sufficient numberof I~atoms mustbe localized within neoplastic cells, and enough thermal neutrons must be delivered and absorbed by the I~ to produce a lethal 1~(n,QVLi reaction. Two major problems must be surmounted.