This volume represents a part of the main result obtained by
a group of French probabilists, together with the
contributions of a number of colleagues, mainly from the USA
and Japan.
All the papers present new results obtained during the
academic year 1991-1992. The main themes of the papers are:
quantum probability (P.A. Meyer and S. Attal), stochastic
calculus (M. Nagasawa, J.B. Walsh, F. Knight, to name a few
authors), fine properties of Brownian motion (Bertoin,
Burdzy, Mountford), stochastic differential geometry
(Arnaudon, Elworthy), quasi-sure analysis (Lescot, Song,
Hirsch).
Taken all together, the papers contained in this volume
reflect the main directions of the most up-to-date research
in probability theory.
FROM THE CONTENTS: J.P. Ansal, C. Stricker: Unicite et
existence de la loi minimale.- K. Kawazu, H. Tanaka: On the
maximum of a diffusion process in a drifted Brownian
environment.- P.A. Meyer: Representation de martingales
d'operateurs, d'apres Parthasarathy-Sinha.- K. Burdzy:
Excursion laws and exceptional points on Brownian paths.- X.
Fernique: Convergence en loi de variables aleatoires et de
fonctions aleatoires, proprietes de compacite des lois, II.-
M. Nagasawa: Principle ofsuperposition and interference of
diffusion processes.- F. Knight: Some remarks on mutual
windings.- S. Song: Inegalites relatives aux processus
d'Ornstein-Ulhenbeck a n-parametres et capacite gaussienne
c (n,2).- S. Attal, P.A. Meyer: Interpretation probabiliste
et extension des integrales stochastiques non commutatives.-
J. Azema, Th. Jeulin, F. Knight,M. Yor: Le theoreme d'arret
en une fin d'ensemble previsible.