SULJE VALIKKO

avaa valikko

Yuichiro Hoshi | Akateeminen Kirjakauppa

TOPICS SURROUNDING THE COMBINATORIAL ANABELIAN GEOMETRY OF HYPERBOLIC CURVES II : TRIPODS AND COMBINATORIAL CUSPIDALIZATION

Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves II : Tripods and Combinatorial Cuspidalization
Yuichiro Hoshi; Shinichi Mochizuki
Springer (2022)
Pehmeäkantinen kirja
54,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves II : Tripods and Combinatorial Cuspidalization
54,40 €
Springer
Sivumäärä: 150 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2022, 22.05.2022 (lisätietoa)
Kieli: Englanti
Tuotesarja: Lecture Notes in Mathematics 2299
The present monograph further develops the study, via the techniques of combinatorial anabelian geometry, of the profinite fundamental groups of configuration spaces associated to hyperbolic curves over algebraically closed fields of characteristic zero.

The starting point of the theory of the present monograph is a combinatorial anabelian result which allows one to reduce issues concerning the anabelian geometry of configuration spaces to issues concerning the anabelian geometry of hyperbolic curves, as well as to give purely group-theoretic characterizations of the cuspidal inertia subgroups of one-dimensional subquotients of the profinite fundamental group of a configuration space.

We then turn to the study of tripod synchronization, i.e., of the phenomenon that an outer automorphism of the profinite fundamental group of a log configuration space associated to a stable log curve inducesthe same outer automorphism on certain subquotients of such a fundamental group determined by tripods [i.e., copies of the projective line minus three points]. The theory of tripod synchronization shows that such outer automorphisms exhibit somewhat different behavior from the behavior that occurs in the case of discrete fundamental groups and, moreover, may be applied to obtain various strong results concerning profinite Dehn multi-twists.

In the final portion of the monograph, we develop a theory of localizability, on the dual graph of a stable log curve, for the condition that an outer automorphism of the profinite fundamental group of the stable log curve lift to an outer automorphism of the profinite fundamental group of a corresponding log configuration space. This localizability is combined with the theory of tripod synchronization to construct a purely combinatorial analogue of the natural outer surjection from the étale fundamental group of the moduli stack of hyperbolic curves over the field of rational numbers to the absolute Galois group of the field of rational numbers.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 5-6 viikossa Tilaa tuote jouluksi viimeistään 13.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves II : Tripods and Combinatorial Cuspidalizationzoom
Näytä kaikki tuotetiedot
ISBN:
9789811910951
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste