SULJE VALIKKO

avaa valikko

Thomas Villmann (ed.) | Akateeminen Kirjakauppa

ADVANCES IN SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION : PROCEEDINGS OF THE 10TH INTERNATIONAL WORKSHOP, WSOM 2014, M

Advances in Self-Organizing Maps and Learning Vector Quantization : Proceedings of the 10th International Workshop, WSOM 2014, M
Thomas Villmann (ed.); Frank-Michael Schleif (ed.); Marika Kaden (ed.); Mandy Lange (ed.)
Springer (2014)
Pehmeäkantinen kirja
190,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Advances in Self-Organizing Maps and Learning Vector Quantization : Proceedings of the 10th International Workshop, WSOM 2014, M
190,00 €
Springer
Sivumäärä: 314 sivua
Asu: Pehmeäkantinen kirja
Painos: 2014
Julkaisuvuosi: 2014, 26.06.2014 (lisätietoa)
Kieli: Englanti
Tuotesarja: Advances in Intelligent Systems and Computing 295

The book collects the scientific contributions presented at the 10th Workshop on Self-Organizing Maps (WSOM 2014) held at the University of Applied Sciences Mittweida, Mittweida (Germany, Saxony), on July 2–4, 2014. Starting with the first WSOM-workshop 1997 in Helsinki this workshop focuses on newest results in the field of supervised and unsupervised vector quantization like self-organizing maps for data mining and data classification.

This 10th WSOM brought together more than 50 researchers, experts and practitioners in the beautiful small town Mittweida in Saxony (Germany) nearby the mountains Erzgebirge to discuss new developments in the field of unsupervised self-organizing vector quantization systems and learning vector quantization approaches for classification. The book contains the accepted papers of the workshop after a careful review process as well as summaries of the invited talks. Among these book chapters there are excellent examples of the use of self-organizing maps in agriculture, computer science, data visualization, health systems, economics, engineering, social sciences, text and image analysis and time series analysis. Other chapters present the latest theoretical work on self-organizing maps as well as learning vector quantization methods, such as relating those methods to classical statistical decision methods.

All the contribution demonstrate that vector quantization methods cover a large range of application areas including data visualization of high-dimensional complex data, advanced decision making and classification or data clustering and data compression.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Advances in Self-Organizing Maps and Learning Vector Quantization : Proceedings of the 10th International Workshop, WSOM 2014, Mzoom
Näytä kaikki tuotetiedot
ISBN:
9783319076942
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste