SULJE VALIKKO

avaa valikko

Rosa Eva Pruneda | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Functional Networks with Applications - A Neural-Based Paradigm
Enrique Castillo; Angel Cobo; Jose Antonio Gutierrez; Rosa Eva Pruneda
Springer (1998)
Kovakantinen kirja
97,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Orthogonal Sets and Polar Methods in Linear Algebra - Applications to Matrix Calculations, Systems of Equations, Inequalities, a
Enrique Castillo; Angel Cobo; Francisco Jubete; Rosa Eva Pruneda
John Wiley & Sons Inc (1999)
Kovakantinen kirja
204,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Functional Networks with Applications : A Neural-Based Paradigm
Enrique Castillo; Angel Cobo; Jose Antonio Gutierrez; Rosa Eva Pruneda
Springer (2013)
Pehmeäkantinen kirja
97,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Functional Networks with Applications - A Neural-Based Paradigm
97,90 €
Springer
Sivumäärä: 309 sivua
Asu: Kovakantinen kirja
Painos: 1999
Julkaisuvuosi: 1998, 31.10.1998 (lisätietoa)
Kieli: Englanti
Tuotesarja: The Springer International Series in Engineering and Computer Science 473
Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net­ works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ­ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Functional Networks with Applications - A Neural-Based Paradigm
Näytä kaikki tuotetiedot
ISBN:
9780792383321
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste