SULJE VALIKKO

avaa valikko

Ronaldo C. Prati | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Learning from Imbalanced Data Sets
Alberto Fernández; Salvador García; Mikel Galar; Ronaldo C. Prati; Bartosz Krawczyk; Francisco Herrera
Springer (2018)
Kovakantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Learning from Imbalanced Data Sets
Alberto Fernández; Salvador García; Mikel Galar; Ronaldo C. Prati; Bartosz Krawczyk; Francisco Herrera
Springer (2019)
Pehmeäkantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Intelligent Systems - 9th Brazilian Conference, BRACIS 2020, Rio Grande, Brazil, October 20–23, 2020, Proceedings, Part I
Ricardo Cerri; Ronaldo C. Prati
Springer Nature Switzerland AG (2020)
Pehmeäkantinen kirja
97,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Intelligent Systems - 9th Brazilian Conference, BRACIS 2020, Rio Grande, Brazil, October 20–23, 2020, Proceedings, Part II
Ricardo Cerri; Ronaldo C. Prati
Springer Nature Switzerland AG (2020)
Pehmeäkantinen kirja
117,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Springer
Sivumäärä: 377 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2018, 01.11.2018 (lisätietoa)
Kieli: Englanti

This  book provides a general and comprehensible overview of   imbalanced learning.  It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. 

This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.

This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.

Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.

This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering.  It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions. 



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 5-6 viikossa. | Tilaa jouluksi viimeistään 13.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Learning from Imbalanced Data Setszoom
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste