SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Qibin Zhao | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Tensor Networks for Dimensionality Reduction and Large-scale Optimization - Part 1 Low-Rank Tensor Decompositions
Andrzej Cichocki; Namgil Lee; Ivan Oseledets; Anh-Huy Phan; Qibin Zhao; Danilo P. Mandic
now publishers Inc (2016)
Pehmeäkantinen kirja
103,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Tensor Networks for Dimensionality Reduction and Large-scale Optimization - Part 2, Applications and Future Perspectives
Andrzej Cichocki; Namgil Lee; lvan Oseledets; Anh Huy Phan; Qibin Zhao
now publishers Inc (2017)
Pehmeäkantinen kirja
103,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Tensor Networks for Dimensionality Reduction and Large-scale Optimization - Part 1 Low-Rank Tensor Decompositions
103,60 €
now publishers Inc
Sivumäärä: 196 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2016, 19.12.2016 (lisätietoa)
Kieli: Englanti
Modern applications in engineering and data science are increasingly based on multidimensional data of exceedingly high volume, variety, and structural richness. However, standard machine learning and data mining algorithms typically scale exponentially with data volume and complexity of cross-modal couplings - the so called curse of dimensionality - which is prohibitive to the analysis of such large-scale, multi-modal and multi-relational datasets. Given that such data are often conveniently represented as multiway arrays or tensors, it is therefore timely and valuable for the multidisciplinary machine learning and data analytic communities to review tensor decompositions and tensor networks as emerging tools for dimensionality reduction and large scale optimization.

This monograph provides a systematic and example-rich guide to the basic properties and applications of tensor network methodologies, and demonstrates their promise as a tool for the analysis of extreme-scale multidimensional data. It demonstrates the ability of tensor networks to provide linearly or even super-linearly, scalable solutions.

The low-rank tensor network framework of analysis presented in this monograph is intended to both help demystify tensor decompositions for educational purposes and further empower practitioners with enhanced intuition and freedom in algorithmic design for the manifold applications. In addition, the material may be useful in lecture courses on large-scale machine learning and big data analytics, or indeed, as interesting reading for the intellectually curious and generally knowledgeable reader.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Tensor Networks for Dimensionality Reduction and Large-scale Optimization - Part 1 Low-Rank Tensor Decompositionszoom
Näytä kaikki tuotetiedot
ISBN:
9781680832228
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste