SULJE VALIKKO

avaa valikko

Pankaj Barah | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Gene Expression Data Analysis - A Statistical and Machine Learning Perspective
Pankaj Barah; Dhruba Kumar Bhattacharyya; Jugal Kumar Kalita
Taylor & Francis Ltd (2021)
Kovakantinen kirja
164,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Gene Expression Data Analysis - A Statistical and Machine Learning Perspective
Pankaj Barah; Dhruba Kumar Bhattacharyya; Jugal Kumar Kalita
Taylor & Francis Ltd (2024)
Pehmeäkantinen kirja
79,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Gene Expression Data Analysis - A Statistical and Machine Learning Perspective
164,60 €
Taylor & Francis Ltd
Sivumäärä: 360 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2021, 22.11.2021 (lisätietoa)
Kieli: Englanti
Development of high-throughput technologies in molecular biology during the last two decades has contributed to the production of tremendous amounts of data. Microarray and RNA sequencing are two such widely used high-throughput technologies for simultaneously monitoring the expression patterns of thousands of genes. Data produced from such experiments are voluminous (both in dimensionality and numbers of instances) and evolving in nature. Analysis of huge amounts of data toward the identification of interesting patterns that are relevant for a given biological question requires high-performance computational infrastructure as well as efficient machine learning algorithms. Cross-communication of ideas between biologists and computer scientists remains a big challenge.

Gene Expression Data Analysis: A Statistical and Machine Learning Perspective has been written with a multidisciplinary audience in mind. The book discusses gene expression data analysis from molecular biology, machine learning, and statistical perspectives. Readers will be able to acquire both theoretical and practical knowledge of methods for identifying novel patterns of high biological significance. To measure the effectiveness of such algorithms, we discuss statistical and biological performance metrics that can be used in real life or in a simulated environment. This book discusses a large number of benchmark algorithms, tools, systems, and repositories that are commonly used in analyzing gene expression data and validating results. This book will benefit students, researchers, and practitioners in biology, medicine, and computer science by enabling them to acquire in-depth knowledge in statistical and machine-learning-based methods for analyzing gene expression data.

Key Features:






An introduction to the Central Dogma of molecular biology and information flow in biological systems



A systematic overview of the methods for generating gene expression data



Background knowledge on statistical modeling and machine learning techniques



Detailed methodology of analyzing gene expression data with an example case study



Clustering methods for finding co-expression patterns from microarray, bulkRNA, and scRNA data



A large number of practical tools, systems, and repositories that are useful for computational biologists to create, analyze, and validate biologically relevant gene expression patterns



Suitable for multidisciplinary researchers and practitioners in computer science and biological sciences

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Gene Expression Data Analysis - A Statistical and Machine Learning Perspectivezoom
Näytä kaikki tuotetiedot
ISBN:
9780367338893
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste