SULJE VALIKKO

avaa valikko

Naomichi Makino | Akateeminen Kirjakauppa

NONLINEAR PRINCIPAL COMPONENT ANALYSIS AND ITS APPLICATIONS

Nonlinear Principal Component Analysis and Its Applications
Yuichi Mori; Masahiro Kuroda; Naomichi Makino
Springer Verlag, Singapore (2016)
Pehmeäkantinen kirja
59,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Nonlinear Principal Component Analysis and Its Applications
59,30 €
Springer Verlag, Singapore
Sivumäärä: 80 sivua
Asu: Pehmeäkantinen kirja
Painos: 1st ed. 2016
Julkaisuvuosi: 2016, 16.12.2016 (lisätietoa)
Kieli: Englanti
Tuotesarja: JSS Research Series in Statistics
This book expounds the principle and related applications of nonlinear principal component analysis (PCA), which is useful method to analyze mixed measurement levels data. In the part dealing with the principle, after a brief introduction of ordinary PCA, a PCA for categorical data (nominal and ordinal) is introduced as nonlinear PCA, in which an optimal scaling technique is used to quantify the categorical variables. The alternating least squares (ALS) is the main algorithm in the method. Multiple correspondence analysis (MCA), a special case of nonlinear PCA, is also introduced. All formulations in these methods are integrated in the same manner as matrix operations. Because any measurement levels data can be treated consistently as numerical data and ALS is a very powerful tool for estimations, the methods can be utilized in a variety of fields such as biometrics, econometrics, psychometrics, and sociology. In the applications part of the book, four applications are introduced: variable selection for mixed measurement levels data, sparse MCA, joint dimension reduction and clustering methods for categorical data, and acceleration of ALS computation. The variable selection methods in PCA that originally were developed for numerical data can be applied to any types of measurement levels by using nonlinear PCA. Sparseness and joint dimension reduction and clustering for nonlinear data, the results of recent studies, are extensions obtained by the same matrix operations in nonlinear PCA. Finally, an acceleration algorithm is proposed to reduce the problem of computational cost in the ALS iteration in nonlinear multivariate methods. This book thus presents the usefulness of nonlinear PCA which can be applied to different measurement levels data in diverse fields. As well, it covers the latest topics including the extension of the traditional statistical method, newly proposed nonlinear methods, and computational efficiency in the methods.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Nonlinear Principal Component Analysis and Its Applicationszoom
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste