SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

N. Bednarz | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Approaches to Algebra - Perspectives for Research and Teaching
N. Bednarz; C. Kieran; L. Lee
Springer (1996)
Kovakantinen kirja
241,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Approaches to Algebra : Perspectives for Research and Teaching
N. Bednarz (ed.); C. Kieran (ed.); L. Lee (ed.)
Springer (1996)
Pehmeäkantinen kirja
241,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Mathematics for Tomorrow’s Young Children
C.S. Mansfield; N.A. Pateman; N. Bednarz
Springer (1996)
Kovakantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Mathematics for Tomorrow’s Young Children
C.S. Mansfield (ed.); N.A. Pateman (ed.); N. Bednarz (ed.)
Springer (2010)
Pehmeäkantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Approaches to Algebra - Perspectives for Research and Teaching
241,40 €
Springer
Sivumäärä: 348 sivua
Asu: Kovakantinen kirja
Painos: 1996 ed.
Julkaisuvuosi: 1996, 30.06.1996 (lisätietoa)
Kieli: Englanti
Tuotesarja: Mathematics Education Library 18
In Greek geometry, there is an arithmetic of magnitudes in which, in terms of numbers, only integers are involved. This theory of measure is limited to exact measure. Operations on magnitudes cannot be actually numerically calculated, except if those magnitudes are exactly measured by a certain unit. The theory of proportions does not have access to such operations. It cannot be seen as an "arithmetic" of ratios. Even if Euclidean geometry is done in a highly theoretical context, its axioms are essentially semantic. This is contrary to Mahoney's second characteristic. This cannot be said of the theory of proportions, which is less semantic. Only synthetic proofs are considered rigorous in Greek geometry. Arithmetic reasoning is also synthetic, going from the known to the unknown. Finally, analysis is an approach to geometrical problems that has some algebraic characteristics and involves a method for solving problems that is different from the arithmetical approach. 3. GEOMETRIC PROOFS OF ALGEBRAIC RULES Until the second half of the 19th century, Euclid's Elements was considered a model of a mathematical theory. This may be one reason why geometry was used by algebraists as a tool to demonstrate the accuracy of rules otherwise given as numerical algorithms. It may also be that geometry was one way to represent general reasoning without involving specific magnitudes. To go a bit deeper into this, here are three geometric proofs of algebraic rules, the frrst by Al-Khwarizmi, the other two by Cardano.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Approaches to Algebra - Perspectives for Research and Teachingzoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste