SULJE VALIKKO

avaa valikko

Milan Vlach | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Generalized Concavity in Fuzzy Optimization and Decision Analysis
Jaroslav Ramík; Milan Vlach
Springer (2001)
Kovakantinen kirja
97,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Generalized Concavity in Fuzzy Optimization and Decision Analysis
Jaroslav Ramík; Milan Vlach
Springer-Verlag New York Inc. (2012)
Pehmeäkantinen kirja
97,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Generalized Concavity in Fuzzy Optimization and Decision Analysis
97,90 €
Springer
Sivumäärä: 296 sivua
Asu: Kovakantinen kirja
Painos: 2002
Julkaisuvuosi: 2001, 30.09.2001 (lisätietoa)
Kieli: Englanti
Tuotesarja: International Series in Operations Research & Management Science 41
Convexity of sets in linear spaces, and concavity and convexity of functions, lie at the root of beautiful theoretical results that are at the same time extremely useful in the analysis and solution of optimization problems, including problems of either single objective or multiple objectives. Not all of these results rely necessarily on convexity and concavity; some of the results can guarantee that each local optimum is also a global optimum, giving these methods broader application to a wider class of problems. Hence, the focus of the first part of the book is concerned with several types of generalized convex sets and generalized concave functions. In addition to their applicability to nonconvex optimization, these convex sets and generalized concave functions are used in the book's second part, where decision-making and optimization problems under uncertainty are investigated.
Uncertainty in the problem data often cannot be avoided when dealing with practical problems. Errors occur in real-world data for a host of reasons. However, over the last thirty years, the fuzzy set approach has proved to be useful in these situations. It is this approach to optimization under uncertainty that is extensively used and studied in the second part of this book. Typically, the membership functions of fuzzy sets involved in such problems are neither concave nor convex. They are, however, often quasiconcave or concave in some generalized sense. This opens possibilities for application of results on generalized concavity to fuzzy optimization. Despite this obvious relation, applying the interface of these two areas has been limited to date. It is hoped that the combination of ideas and results from the field of generalized concavity on the one hand and fuzzy optimization on the other hand outlined and discussed in Generalized Concavity in Fuzzy Optimization and Decision Analysis will be of interest to both communities. Our aimis to broaden the classes of problems that the combination of these two areas can satisfactorily address and solve.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Generalized Concavity in Fuzzy Optimization and Decision Analysiszoom
Näytä kaikki tuotetiedot
ISBN:
9780792374954
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste