SULJE VALIKKO

avaa valikko

Michael N. Vrahatis | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Nonlinear Optimization Approaches for Training Neural Networks
George Magoulas; Vassilis Plagianakos; Michael N. Vrahatis
Springer-Verlag New York Inc. (2015)
Kovakantinen kirja
87,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Particle Swarm Optimization and Intelligence - Advances and Applications
Konstantinos E. Parsopoulos; Michael N. Vrahatis
IGI Global (2010)
Kovakantinen kirja
203,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Black Box Optimization, Machine Learning, and No-Free Lunch Theorems
Panos M. Pardalos; Varvara Rasskazova; Michael N. Vrahatis
Springer Nature Switzerland AG (2021)
Kovakantinen kirja
126,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Black Box Optimization, Machine Learning, and No-Free Lunch Theorems
Panos M. Pardalos; Varvara Rasskazova; Michael N. Vrahatis
Springer Nature Switzerland AG (2022)
Pehmeäkantinen kirja
126,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Nonlinear Optimization Approaches for Training Neural Networks
87,00 €
Springer-Verlag New York Inc.
Sivumäärä: 500 sivua
Asu: Kovakantinen kirja
Painos: 2015
Julkaisuvuosi: 2015, 07.09.2015 (lisätietoa)
Kieli: Englanti
This book examines how nonlinear optimization techniques can be applied to training and testing neural networks. It includes both well-known and recently-developed network training methods including deterministic nonlinear optimization methods, stochastic nonlinear optimization methods, and advanced training schemes which combine both deterministic and stochastic components. The convergence analysis and convergence proofs of these techniques are presented as well as real applications of neural networks in areas such as pattern classification, bioinformatics, biomedicine, and finance. Nonlinear optimization methods are applied extensively in the design of training protocols for artificial neural networks used in industry and academia. Such techniques allow for the implementation of dynamic unsupervised neural network training without requiring the fine tuning of several heuristic parameters. "Nonlinear Optimization Approaches for Training Neural Networks" is a response to the growing demand for innovations in this area of research.
This monograph presents a wide range of approaches to neural networks training providing theoretical justification for network behavior based on the theory of nonlinear optimization. It presents training algorithms, and theoretical results on their convergence and implementations through pseudocode. This approach offers the reader an explanation of the performance of the various methods, and a better understanding of the individual characteristics of the various methods, their differences/advantages and interrelationships. This improved perspective allows the reader to choose the best network training method without spending too much effort configuring highly sensitive heuristic parameters. This book can serve as an excellent guide for researchers, graduate students, and lecturers interested in the development of neural networks and their training.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Nonlinear Optimization Approaches for Training Neural Networks
Näytä kaikki tuotetiedot
ISBN:
9781441916334
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste