SULJE VALIKKO

avaa valikko

László Györfi | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 6 tuotetta
Haluatko tarkentaa hakukriteerejä?



A Distribution-Free Theory of Nonparametric Regression
László Györfi; Michael Kohler; Adam Krzyzak; Harro Walk
Springer-Verlag New York Inc. (2002)
Kovakantinen kirja
241,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Principles of Nonparametric Learning
Györfi; Laszlo (ed.)
Springer (2002)
Pehmeäkantinen kirja
139,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
A Distribution-Free Theory of Nonparametric Regression
László Györfi; Michael Kohler; Adam Krzyzak; Harro Walk
Springer-Verlag New York Inc. (2010)
Pehmeäkantinen kirja
241,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
A Probabilistic Theory of Pattern Recognition
Luc Devroye; Laszlo Györfi; Gabor Lugosi
Springer-Verlag New York Inc. (1996)
Kovakantinen kirja
126,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Algorithmic Learning Theory - 19th International Conference, ALT 2008, Budapest, Hungary, October 13-16, 2008, Proceedings
Yoav Freund; László Györfi; György Turán; Thomas Zeugmann
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2008)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
A Probabilistic Theory of Pattern Recognition
Luc Devroye; Laszlo Györfi; Gabor Lugosi
Springer (2013)
Pehmeäkantinen kirja
88,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
A Distribution-Free Theory of Nonparametric Regression
241,40 €
Springer-Verlag New York Inc.
Sivumäärä: 650 sivua
Asu: Kovakantinen kirja
Painos: 2002
Julkaisuvuosi: 2002, 12.08.2002 (lisätietoa)
Kieli: Englanti
Tuotesarja: Springer Series in Statistics
The regression estimation problem has a long history. Already in 1632 Galileo Galilei used a procedure which can be interpreted as ?tting a linear relationship to contaminated observed data. Such ?tting of a line through a cloud of points is the classical linear regression problem. A solution of this problem is provided by the famous principle of least squares, which was discovered independently by A. M. Legendre and C. F. Gauss and published in 1805 and 1809, respectively. The principle of least squares can also be applied to construct nonparametric regression estimates, where one does not restrict the class of possible relationships, and will be one of the approaches studied in this book. Linear regression analysis, based on the concept of a regression function, was introduced by F. Galton in 1889, while a probabilistic approach in the context of multivariate normal distributions was already given by A. B- vais in 1846. The ?rst nonparametric regression estimate of local averaging type was proposed by J. W. Tukey in 1947. The partitioning regression - timate he introduced, by analogy to the classical partitioning (histogram) density estimate, can be regarded as a special least squares estimate.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
A Distribution-Free Theory of Nonparametric Regressionzoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste