This volume contains a collection of original research papers on recent developments in Banach space theory and related areas by many of the leading research workers in the field. A considerable number of papers are devoted to structure theory of infinite-dimensional Banach spaces. This research ground has experienced a remarkable breakthrough in recent years, which has given new insight into infinite-dimensional geometry (even of Hilbert spaces). Several new results and examples are included in this volume and new research directions are surveyed. Other contributions concern the well established local theory of Banach spaces and its fruitful connection with classical convexity in Rn. The volume also contains several papers on harmonic analysis, probabilistic methods in functional analysis and nonlinear geometry. Research workers and graduate students in Banach space theory, convexity, harmonic analysis and probability will value this book's utility and insight.