SULJE VALIKKO

avaa valikko

Jianbing Ni | Akateeminen Kirjakauppa

PRIVACY-ENHANCING FOG COMPUTING AND ITS APPLICATIONS

Privacy-Enhancing Fog Computing and Its Applications
Xiaodong Lin; Jianbing Ni; Xuemin Shen (Sherman)
Springer Nature Switzerland AG (2018)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Privacy-Enhancing Fog Computing and Its Applications
49,60 €
Springer Nature Switzerland AG
Sivumäärä: 89 sivua
Asu: Pehmeäkantinen kirja
Painos: 1st ed. 2018
Julkaisuvuosi: 2018, 20.11.2018 (lisätietoa)
Kieli: Englanti
Tuotesarja: SpringerBriefs in Electrical and Computer Engineering
This SpringerBrief  covers the security and privacy challenges in fog computing, and proposes a  new secure and privacy-preserving mechanisms to resolve these challenges for securing fog-assisted IoT applications. Chapter 1 introduces the architecture of fog-assisted IoT applications and the security and privacy challenges in fog computing. Chapter 2 reviews several promising privacy-enhancing techniques and illustrates examples on how to leverage these techniques to enhance the privacy of users in fog computing. Specifically,  the authors divide the existing privacy-enhancing techniques into three categories: identity-hidden techniques, location privacy protection and data privacy enhancing techniques. The research is of great importance since security and privacy problems faced by fog computing impede the healthy development of its enabled IoT applications.

 

With the advanced privacy-enhancing techniques, the authors propose three secure andprivacy-preserving protocols for fog computing applications, including smart parking navigation, mobile crowdsensing and smart grid.  Chapter 3 introduces identity privacy leakage in smart parking navigation systems, and proposes a privacy-preserving smart parking navigation system to prevent identity privacy exposure and support efficient parking guidance retrieval through road-side units (fogs) with high retrieving probability and security guarantees. Chapter 4 presents the location privacy leakage, during task allocation in mobile crowdsensing, and propose a strong privacy-preserving task allocation scheme that enables location-based task allocation and reputation-based report selection without exposing knowledge about the location and reputation for participators in mobile crowdsensing. Chapter 5 introduces the data privacy leakage in smart grid, and proposes an efficient and privacy-preserving smart metering protocol to allow collectors (fogs) to achieve real-time measurement collection with privacy-enhanced data aggregation. Finally, conclusions and future research directions are given in Chapter 6.

 This brief validates the significant feature extension and efficiency improvement of IoT devices without sacrificing the security and privacy of users against dishonest fog nodes. It also provides valuable insights on the security and privacy protection for fog-enabled IoT applications. Researchers and professionals who carry out research on security and privacy in wireless communication will want to purchase this SpringerBrief.  Also, advanced level students,  whose main research area is mobile network security will also be interested in this SpringerBrief. 

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Privacy-Enhancing Fog Computing and Its Applicationszoom
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste