SULJE VALIKKO

avaa valikko

Hellinton Takada (ed.) | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Bayesian Inference and Maximum Entropy Methods in Science and Engineering : MaxEnt 37, Jarinu, Brazil, July 09–14, 2017
Adriano Polpo (ed.); Julio Stern (ed.); Francisco Louzada (ed.); Rafael Izbicki (ed.); Hellinton Takada (ed.)
Springer (2018)
Kovakantinen kirja
147,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Bayesian Inference and Maximum Entropy Methods in Science and Engineering : MaxEnt 37, Jarinu, Brazil, July 09–14, 2017
Adriano Polpo (ed.); Julio Stern (ed.); Francisco Louzada (ed.); Rafael Izbicki (ed.); Hellinton Takada (ed.)
Springer (2019)
Pehmeäkantinen kirja
147,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Bayesian Inference and Maximum Entropy Methods in Science and Engineering : MaxEnt 37, Jarinu, Brazil, July 09–14, 2017
147,10 €
Springer
Sivumäärä: 304 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2018, 14.07.2018 (lisätietoa)
Kieli: Englanti
Tuotesarja: Springer Proceedings in Mathematics & Statistics 239

These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. 



Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. 



For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inferenceto illuminate the foundations of physical theories, are also of keen interest.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Bayesian Inference and Maximum Entropy Methods in Science and Engineering : MaxEnt 37, Jarinu, Brazil, July 09–14, 2017zoom
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste