SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

George B. Huitema | Akateeminen Kirjakauppa

QUASI-PERIODIC MOTIONS IN FAMILIES OF DYNAMICAL SYSTEMS - ORDER AMIDST CHAOS

Quasi-Periodic Motions in Families of Dynamical Systems - Order amidst Chaos
Hendrik W. Broer; George B. Huitema; Mikhail B. Sevryuk
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (1996)
Pehmeäkantinen kirja
46,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Quasi-Periodic Motions in Families of Dynamical Systems - Order amidst Chaos
46,30 €
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Sivumäärä: 200 sivua
Asu: Pehmeäkantinen kirja
Painos: 1996
Julkaisuvuosi: 1996, 16.12.1996 (lisätietoa)
Kieli: Englanti
Tuotesarja: Lecture Notes in Mathematics 1645
This book is devoted to the phenomenon of quasi-periodic motion in dynamical systems. Such a motion in the phase space densely fills up an invariant torus. This phenomenon is most familiar from Hamiltonian dynamics. Hamiltonian systems are well known for their use in modelling the dynamics related to frictionless mechanics, including the planetary and lunar motions. In this context the general picture appears to be as follows. On the one hand, Hamiltonian systems occur that are in complete order: these are the integrable systems where all motion is confined to invariant tori. On the other hand, systems exist that are entirely chaotic on each energy level. In between we know systems that, being sufficiently small perturbations of integrable ones, exhibit coexistence of order (invariant tori carrying quasi-periodic dynamics) and chaos (the so called stochastic layers). The Kolmogorov-Arnol'd-Moser (KAM) theory on quasi-periodic motions tells us that the occurrence of such motions is open within the class of all Hamiltonian systems: in other words, it is a phenomenon persistent under small Hamiltonian perturbations. Moreover, generally, for any such system the union of quasi-periodic tori in the phase space is a nowhere dense set of positive Lebesgue measure, a so called Cantor family. This fact implies that open classes of Hamiltonian systems exist that are not ergodic. The main aim of the book is to study the changes in this picture when other classes of systems - or contexts - are considered.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Quasi-Periodic Motions in Families of Dynamical Systems - Order amidst Chaoszoom
Näytä kaikki tuotetiedot
ISBN:
9783540620259
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste