SULJE VALIKKO

avaa valikko

Filippo Maria Bianchi | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Recurrent Neural Networks for Short-Term Load Forecasting - An Overview and Comparative Analysis
Filippo Maria Bianchi; Enrico Maiorino; Michael C. Kampffmeyer; Antonello Rizzi; Robert Jenssen
Springer International Publishing AG (2017)
Pehmeäkantinen kirja
68,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Image Analysis - 20th Scandinavian Conference, SCIA 2017, Tromsø, Norway, June 12–14, 2017, Proceedings, Part II
Puneet Sharma; Filippo Maria Bianchi
Springer International Publishing AG (2017)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Image Analysis - 20th Scandinavian Conference, SCIA 2017, Tromsø, Norway, June 12–14, 2017, Proceedings, Part I
Puneet Sharma; Filippo Maria Bianchi
Springer International Publishing AG (2017)
Pehmeäkantinen kirja
78,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Come impariamo a muoverci nell'ambiente? : Esercizi per bambini dai 5 ai 10 anni
Laura Piccardi (ed.); Maria Rosa Pizzamiglio; Filippo Bianchini; Liana Palermo; Monica Risetti; Laura Zompanti; Guariglia
Springer (2011)
Moniviestin
32,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Recurrent Neural Networks for Short-Term Load Forecasting - An Overview and Comparative Analysis
68,90 €
Springer International Publishing AG
Sivumäärä: 72 sivua
Asu: Pehmeäkantinen kirja
Painos: 1st ed. 2017
Julkaisuvuosi: 2017, 17.11.2017 (lisätietoa)
Kieli: Englanti
Tuotesarja: SpringerBriefs in Computer Science
The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system.

Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures.

Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Recurrent Neural Networks for Short-Term Load Forecasting - An Overview and Comparative Analysiszoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste