A number of books and research papers have been published on trauma and biomechanics.Theyhavesofarnotbeenrealisticallyintegrated.Thebasicaim ofthisbookistopresentauni?edapproachbetweentheengineeringandm- ical professions. The available engineering analyses and mathematical models can be interlinked and glued together with the medical ?ndings by means of surgeries and X-rays/scans. They can be translated into vastly developed computer programs predicting e?ects of plasticity, temperature, cracking, and crushing with and without muscles and other interlocking phenomenon. The available mathematical-cum-engineering model on trauma and bone mechanics are then linked to the ?nite element analysis and to a computer programinwhichprovisionsaremadetocaterforallpossibleeventualitiesand medicalparameters.Theproblemencounteredbysurgeriescanbeeasilybe- corporated into hybrid ?nite element computer programs such as PROGRAM ISOPARusedinthisbook.Inallcasestudiesthesurgicalin?uenceshavebeen considered together with the bone material data for both the operational, nonoperational and overloading behaviour of the human body structure. In all circumstances the human body structure and its important elements were treated as composite. The bone–blood interaction has been incorporated in ordertoobtainrealisticsolutions.Materialpropertiesinthree-dimensionhave always been considered in throughout in various investigations. Engineering analysis of trauma is being continuously developed taking into consideration the ever increasing changes in analytical, design, safety, and manufacturing techniques. The engineering advances in that direction are steadily gaining international acceptance in the wide sense of the medical profession.