SULJE VALIKKO

avaa valikko

Evgenii Vityaev | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Data Mining in Finance - Advances in Relational and Hybrid Methods
Boris Kovalerchuk; Evgenii Vityaev
Springer (2000)
Kovakantinen kirja
172,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Data Mining in Finance : Advances in Relational and Hybrid Methods
Boris Kovalerchuk; Evgenii Vityaev
Springer (2013)
Pehmeäkantinen kirja
172,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Data Mining in Finance - Advances in Relational and Hybrid Methods
172,80 €
Springer
Sivumäärä: 308 sivua
Asu: Kovakantinen kirja
Painos: 2000
Julkaisuvuosi: 2000, 30.04.2000 (lisätietoa)
Kieli: Englanti
Tuotesarja: The Springer International Series in Engineering and Computer Science 547
Data Mining in Finance presents a comprehensive overview of major algorithmic approaches to predictive data mining, including statistical, neural networks, ruled-based, decision-tree, and fuzzy-logic methods, and then examines the suitability of these approaches to financial data mining. The book focuses specifically on relational data mining (RDM), which is a learning method able to learn more expressive rules than other symbolic approaches. RDM is thus better suited for financial mining, because it is able to make greater use of underlying domain knowledge. Relational data mining also has a better ability to explain the discovered rules - an ability critical for avoiding spurious patterns which inevitably arise when the number of variables examined is very large. The earlier algorithms for relational data mining, also known as inductive logic programming (ILP), suffer from a relative computational inefficiency and have rather limited tools for processing numerical data.
Data Mining in Finance introduces a new approach, combining relational data mining with the analysis of statistical significance of discovered rules. This reduces the search space and speeds up the algorithms. The book also presents interactive and fuzzy-logic tools for `mining' the knowledge from the experts, further reducing the search space.
Data Mining in Finance contains a number of practical examples of forecasting S&P 500, exchange rates, stock directions, and rating stocks for portfolio, allowing interested readers to start building their own models. This book is an excellent reference for researchers and professionals in the fields of artificial intelligence, machine learning, data mining, knowledge discovery, and applied mathematics.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 5-6 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Data Mining in Finance - Advances in Relational and Hybrid Methodszoom
Näytä kaikki tuotetiedot
ISBN:
9780792378044
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste