SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

ElMouatez Billah Karbab | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Android Malware Detection using Machine Learning : Data-Driven Fingerprinting and Threat Intelligence
ElMouatez Billah Karbab; Mourad Debbabi; Abdelouahid Derhab; Djedjiga Mouheb
Springer (2021)
Kovakantinen kirja
152,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Android Malware Detection using Machine Learning : Data-Driven Fingerprinting and Threat Intelligence
ElMouatez Billah Karbab; Mourad Debbabi; Abdelouahid Derhab; Djedjiga Mouheb
Springer (2022)
Pehmeäkantinen kirja
152,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Android Malware Detection using Machine Learning : Data-Driven Fingerprinting and Threat Intelligence
152,40 €
Springer
Sivumäärä: 202 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2021, 11.07.2021 (lisätietoa)
Kieli: Englanti
Tuotesarja: Advances in Information Security 86
The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures.

First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Basedon this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware.

The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level.  It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques.

Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Android Malware Detection using Machine Learning : Data-Driven Fingerprinting and Threat Intelligencezoom
Näytä kaikki tuotetiedot
ISBN:
9783030746636
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste