SULJE VALIKKO

avaa valikko

Deniz Sarikaya (ed.) | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Mathesis Universalis, Computability and Proof
Stefania Centrone (ed.); Sara Negri (ed.); Deniz Sarikaya (ed.); Peter M. Schuster (ed.)
Springer (2019)
Kovakantinen kirja
117,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Mathesis Universalis, Computability and Proof
Stefania Centrone (ed.); Sara Negri (ed.); Deniz Sarikaya (ed.); Peter M. Schuster (ed.)
Springer (2020)
Pehmeäkantinen kirja
117,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Mathesis Universalis, Computability and Proof
117,20 €
Springer
Sivumäärä: 374 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2019, 06.11.2019 (lisätietoa)
Kieli: Englanti
Tuotesarja: Synthese Library 412

In a fragment entitled Elementa Nova Matheseos Universalis (1683?) Leibniz writes “the mathesis […] shall deliver the method through which things that are conceivable can be exactly determined”; in another fragment he takes the mathesis to be “the science of all things that are conceivable.” Leibniz considers all mathematical disciplines as branches of the mathesis and conceives the mathesis as a general science of forms applicable not only to magnitudes but to every object that exists in our imagination, i.e. that is possible at least in principle. As a general science of forms the mathesis investigates possible relations between “arbitrary objects” (“objets quelconques”). It is an abstract theory of combinations and relations among objects whatsoever.

In 1810 the mathematician and philosopher Bernard Bolzano published a booklet entitled Contributions to a Better-Grounded Presentation of Mathematics. There is, according to him, a certain objective connection among the truths that are germane to a certain homogeneous field of objects: some truths are the “reasons” (“Gründe”) of others, and the latter are “consequences” (“Folgen”) of the former. The reason-consequence relation seems to be the counterpart of causality at the level of a relation between true propositions. Arigorous proof is characterized in this context as a proof that shows the reason of the proposition that is to be proven. Requirements imposed on rigorous proofs seem to anticipate normalization results in current proof theory.

The contributors of Mathesis Universalis, Computability and Proof,  leading experts in the fields of computer science, mathematics, logic and philosophy, show the evolution of these and related ideas exploring topics in proof theory, computability theory, intuitionisticlogic, constructivism and reverse mathematics, delving deeply into a contextual examination of the relationship between mathematical rigor and demands for simplification. 



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Mathesis Universalis, Computability and Proofzoom
Näytä kaikki tuotetiedot
ISBN:
9783030204464
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste