SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Cornelis Joost van Rijsbergen (ed.) | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Information Retrieval: Uncertainty and Logics : Advanced Models for the Representation and Retrieval of Information
Cornelis Joost van Rijsbergen (ed.); Fabio Crestani (ed.); Mounia Lalmas (ed.)
Springer (2012)
Pehmeäkantinen kirja
268,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Information Retrieval: Uncertainty and Logics : Advanced Models for the Representation and Retrieval of Information
Cornelis Joost van Rijsbergen (ed.); Fabio Crestani (ed.); Mounia Lalmas (ed.)
Springer (1998)
Kovakantinen kirja
268,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Information Retrieval: Uncertainty and Logics : Advanced Models for the Representation and Retrieval of Information
268,00 €
Springer
Sivumäärä: 323 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2012, 22.12.2012 (lisätietoa)
Kieli: Englanti
Tuotesarja: The Information Retrieval Series 4
In recent years, there have been several attempts to define a logic for information retrieval (IR). The aim was to provide a rich and uniform representation of information and its semantics with the goal of improving retrieval effectiveness. The basis of a logical model for IR is the assumption that queries and documents can be represented effectively by logical formulae. To retrieve a document, an IR system has to infer the formula representing the query from the formula representing the document. This logical interpretation of query and document emphasizes that relevance in IR is an inference process.
The use of logic to build IR models enables one to obtain models that are more general than earlier well-known IR models. Indeed, some logical models are able to represent within a uniform framework various features of IR systems such as hypermedia links, multimedia data, and user's knowledge. Logic also provides a common approach to the integration of IR systems with logical database systems. Finally, logic makes it possible to reason about an IR model and its properties. This latter possibility is becoming increasingly more important since conventional evaluation methods, although good indicators of the effectiveness of IR systems, often give results which cannot be predicted, or for that matter satisfactorily explained.
However, logic by itself cannot fully model IR. The success or the failure of the inference of the query formula from the document formula is not enough to model relevance in IR. It is necessary to take into account the uncertainty inherent in such an inference process. In 1986, Van Rijsbergen proposed the uncertainty logical principle to model relevance as an uncertain inference process. When proposing the principle, Van Rijsbergen was not specific about which logic and which uncertainty theory to use. As a consequence, various logics and uncertainty theories have been proposed and investigated. The choice of an appropriate logic and uncertainty mechanism has been a main research theme in logical IR modeling leading to a number of logical IR models over the years.
Information Retrieval: Uncertainty and Logics contains a collection of exciting papers proposing, developing and implementing logical IR models. This book is appropriate for use as a text for a graduate-level course on Information Retrieval or Database Systems, and as a reference for researchers and practitioners in industry.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Information Retrieval: Uncertainty and Logics : Advanced Models for the Representation and Retrieval of Information
Näytä kaikki tuotetiedot
ISBN:
9781461375708
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste