SULJE VALIKKO

avaa valikko

Bruno Scalzo | Akateeminen Kirjakauppa

DATA ANALYTICS ON GRAPHS

Data Analytics on Graphs
Ljubiša Stanković; Danilo P. Mandic; Miloš Daković; Miloš Brajović; Bruno Scalzo; Shengxi Li; Anthony G. Constantinides
now publishers Inc (2020)
Kovakantinen kirja
131,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
now publishers Inc
Sivumäärä: 555 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2020, 22.12.2020 (lisätietoa)
Kieli: Englanti
The current availability of powerful computers and huge data sets is creating new opportunities in computational mathematics to bring together concepts and tools from graph theory, machine learning and signal processing, creating Data Analytics on Graphs.

In discrete mathematics, a graph is merely a collection of points (nodes) and lines connecting some or all of them. The power of such graphs lies in the fact that the nodes can represent entities as diverse as the users of social networks or financial market data, and that these can be transformed into signals which can be analyzed using data analytics tools. Data Analytics on Graphs is a comprehensive introduction to generating advanced data analytics on graphs that allows us to move beyond the standard regular sampling in time and space to facilitate modelling in many important areas, including communication networks, computer science, linguistics, social sciences, biology, physics, chemistry, transport, town planning, financial systems, personal health and many others.

The authors revisit graph topologies from a modern data analytics point of view, and proceed to establish a taxonomy of graph networks. With this as a basis, the authors show how the spectral analysis of graphs leads to even the most challenging machine learning tasks, such as clustering, being performed in an intuitive and physically meaningful way. The authors detail unique aspects of graph data analytics, such as their benefits for processing data acquired on irregular domains, their ability to finely-tune statistical learning procedures through local information processing, the concepts of random signals on graphs and graph shifts, learning of graph topology from data observed on graphs, and confluence with deep neural networks, multi-way tensor networks and Big Data. Extensive examples are included to render the concepts more concrete and to facilitate a greater understanding of the underlying principles.

Aimed at readers with a good grasp of the fundamentals of data analytics, this book sets out the fundamentals of graph theory and the emerging mathematical techniques for the analysis of a wide range of data acquired on graph environments. Data Analytics on Graphs will be a useful friend and a helpful companion to all involved in data gathering and analysis irrespective of area of application.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Data Analytics on Graphszoom
Näytä kaikki tuotetiedot
ISBN:
9781680839821
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste