SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Bahareh Behkamal | Akateeminen Kirjakauppa

LONG-TERM STRUCTURAL HEALTH MONITORING BY REMOTE SENSING AND ADVANCED MACHINE LEARNING - A PRACTICAL STRATEGY VIA STRUCTURAL DIS

Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning - A Practical Strategy via Structural Dis
Alireza Entezami; Bahareh Behkamal; Carlo De Michele
Springer International Publishing AG (2024)
Pehmeäkantinen kirja
44,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning - A Practical Strategy via Structural Dis
44,80 €
Springer International Publishing AG
Sivumäärä: 110 sivua
Asu: Pehmeäkantinen kirja
Painos: 2024
Julkaisuvuosi: 2024, 22.02.2024 (lisätietoa)
Kieli: Englanti
Tuotesarja: PoliMI SpringerBriefs
This book offers an in-depth investigation into the complexities of long-term structural health monitoring (SHM) in civil structures, specifically focusing on the challenges posed by small data and environmental and operational changes (EOCs). Traditional contact-based sensor networks in SHM produce large amounts of data, complicating big data management. In contrast, synthetic aperture radar (SAR)-aided SHM often faces challenges with small datasets and limited displacement data. Additionally, EOCs can mimic the structural damage, resulting in false errors that can critically affect economic and safety issues. Addressing these challenges, this book introduces seven advanced unsupervised learning methods for SHM, combining AI, data sampling, and statistical analysis. These include techniques for managing datasets and addressing EOCs. Methods range from nearest neighbor searching and Hamiltonian Monte Carlo sampling to innovative offline and online learning frameworks, focusing on data augmentation and normalization. Key approaches involve deep autoencoders for data processing and novel algorithms for damage detection. Validated using simulated data from the I-40 Bridge, USA, and real-world data from the Tadcaster Bridge, UK, these methods show promise in addressing SAR-aided SHM challenges, offering practical tools for real-world applications. The book, thereby, presents a comprehensive suite of innovative strategies to advance the field of SHM.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning - A Practical Strategy via Structural Diszoom
Näytä kaikki tuotetiedot
ISBN:
9783031539947
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste