SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Arianna Mencattini | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Computerized Analysis of Mammographic Images for Detection and Characterization of Breast Cancer
Arianna Mencattini; Paola Casti; Marcello Salmeri; Rangaraj M. Rangayyan
Springer International Publishing AG (2017)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Computerized Analysis of Mammographic Images for Detection and Characterization of Breast Cancer
Paola Casti; Arianna Mencattini; Marcello Salmeri; Rangaraj M. Rangayyan
Morgan & Claypool Publishers (2017)
Pehmeäkantinen kirja
85,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Medical Image Analysis and Informatics - Computer-Aided Diagnosis and Therapy
Paulo Mazzoncini de Azevedo-Marques; Arianna Mencattini; Marcello Salmeri; Rangaraj M. Rangayyan
Taylor & Francis Inc (2017)
Kovakantinen kirja
269,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Medical Image Analysis and Informatics - Computer-Aided Diagnosis and Therapy
Paulo Mazzoncini de Azevedo-Marques; Arianna Mencattini; Marcello Salmeri; Rangaraj M. Rangayyan
Taylor & Francis Ltd (2019)
Pehmeäkantinen kirja
117,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Computerized Analysis of Mammographic Images for Detection and Characterization of Breast Cancer
49,60 €
Springer International Publishing AG
Sivumäärä: 166 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2017, 06.07.2017 (lisätietoa)
Kieli: Englanti
Tuotesarja: Synthesis Lectures on Biomedical Engineering
The identification and interpretation of the signs of breast cancer in mammographic images from screening programs can be very difficult due to the subtle and diversified appearance of breast disease. This book presents new image processing and pattern recognition techniques for computer-aided detection and diagnosis of breast cancer in its various forms. The main goals are: (1) the identification of bilateral asymmetry as an early sign of breast disease which is not detectable by other existing approaches; and (2) the detection and classification of masses and regions of architectural distortion, as benign lesions or malignant tumors, in a unified framework that does not require accurate extraction of the contours of the lesions. The innovative aspects of the work include the design and validation of landmarking algorithms, automatic Tabár masking procedures, and various feature descriptors for quantification of similarity and for contour independent classification of mammographic lesions. Characterization of breast tissue patterns is achieved by means of multidirectional Gabor filters. For the classification tasks, pattern recognition strategies, including Fisher linear discriminant analysis, Bayesian classifiers, support vector machines, and neural networks are applied using automatic selection of features and cross-validation techniques. Computer-aided detection of bilateral asymmetry resulted in accuracy up to 0.94, with sensitivity and specificity of 1 and 0.88, respectively. Computer-aided diagnosis of automatically detected lesions provided sensitivity of detection of malignant tumors in the range of [0.70, 0.81] at a range of falsely detected tumors of [0.82, 3.47] per image. The techniques presented in this work are effective in detecting and characterizing various mammographic signs of breast disease.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Computerized Analysis of Mammographic Images for Detection and Characterization of Breast Cancerzoom
Näytä kaikki tuotetiedot
ISBN:
9783031005367
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste