SULJE VALIKKO
KIRJAUDU
NONLINEAR DIFFUSION EQUATIONS AND CURVATURE CONDITIONS IN METRIC MEASURE SPACES | ||
| Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces 84,70 € American Mathematical Society Sivumäärä: 121 sivua Asu: Pehmeäkantinen kirja Julkaisuvuosi: 2020, 30.03.2020 (lisätietoa) Kieli: Englanti The aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces $(X,mathsf d,mathfrak m)$. On the geometric side, the authors' new approach takes into account suitable weighted action functionals which provide the natural modulus of $K$-convexity when one investigates the convexity properties of $N$-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, the authors' new approach uses the nonlinear diffusion semigroup induced by the $N$-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger's energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong $mathrm {CD}^{*}(K,N)$ condition of Bacher-Sturm. Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Näytä kaikki tuotetiedotISBN: 9781470439132 Aihealue: |
Sisäänkirjautuminen
Kirjaudu sisäänRekisteröityminen |
Oma tili
Omat tiedotOmat tilaukset Omat laskut |
Lisätietoja
AsiakaspalveluTietoa verkkokaupasta Toimitusehdot Tietosuojaseloste |