Luigi Ambrosio; Giuseppe Buttazzo; Norman Dancer; Antonio Marino; M.K.V. Murthy Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2000) Pehmeäkantinen kirja
Luigi Ambrosio; Bernard Dacorogna; Luis A. Caffarelli; Paolo Marcellini; Michael G. Crandall; Lawrence C. Evans; Ni Fusco Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2007) Pehmeäkantinen kirja
Luigi Ambrosio; Pierluigi Colli; Klaus Deckelnick; Gerhard Dziuk; Masayasu Mimura; Vsvolod Solonnikov; Halil Mete Soner Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2003) Pehmeäkantinen kirja
Luigi Ambrosio; Fabio Ancona; Gianluca Crippa; Stefano Bianchini; Camillo De Lellis; Rinaldo M. Colombo; Felix Otto; West Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2008) Pehmeäkantinen kirja
Luigi Ambrosio; Luis A. Caffarelli; Sandro Salsa; Yann Brenier; Giuseppe Buttazzo; Cédric Villani Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2003) Pehmeäkantinen kirja
Luigi Ambrosio; Alberto Bressan; Dirk Helbing; Axel Klar; Enrique Zuazua Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2012) Pehmeäkantinen kirja
Edizioni della Normale Sivumäärä: 187 sivua Asu: Pehmeäkantinen kirja Painos: 1st Edition. Julkaisuvuosi: 2011, 22.08.2011 (lisätietoa) Kieli: Englanti
This textbook collects the notes for an introductory course in measure theory and integration. The course was taught by the authors to undergraduate students of the Scuola Normale Superiore, in the years 2000-2011. The goal of the course was to present, in a quick but rigorous way, the modern point of view on measure theory and integration, putting Lebesgue's Euclidean space theory into a more general context and presenting the basic applications to Fourier series, calculus and real analysis. The text can also pave the way to more advanced courses in probability, stochastic processes or geometric measure theory. Prerequisites for the book are a basic knowledge of calculus in one and several variables, metric spaces and linear algebra. All results presented here, as well as their proofs, are classical. The authors claim some originality only in the presentation and in the choice of the exercises. Detailed solutions to the exercises are provided in the final part of the book.