SULJE VALIKKO

avaa valikko

Geometric Structure of High-Dimensional Data and Dimensionality Reduction
109,40 €
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Sivumäärä: 356 sivua
Asu: Kovakantinen kirja
Painos: 2012 ed.
Julkaisuvuosi: 2012, 05.03.2012 (lisätietoa)
Kieli: Englanti
"Geometric Structure of High-Dimensional Data and Dimensionality Reduction" adopts data geometry as a framework to address various methods of dimensionality reduction. In addition to the introduction to well-known linear methods, the book moreover stresses the recently developed nonlinear methods and introduces the applications of dimensionality reduction in many areas, such as face recognition, image segmentation, data classification, data visualization, and hyperspectral imagery data analysis. Numerous tables and graphs are included to illustrate the ideas, effects, and shortcomings of the methods. MATLAB code of all dimensionality reduction algorithms is provided to aid the readers with the implementations on computers.

The book will be useful for mathematicians, statisticians, computer scientists, and data analysts. It is also a valuable handbook for other practitioners who have a basic background in mathematics, statistics and/or computer algorithms, like internet search engine designers, physicists, geologists, electronic engineers, and economists.

Jianzhong Wang is a Professor of Mathematics at Sam Houston State University, U.S.A.

Loppuunmyyty
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Geometric Structure of High-Dimensional Data and Dimensionality Reductionzoom
Näytä kaikki tuotetiedot
ISBN:
9783642274961
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste